

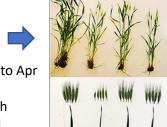
Società Italiana di Agronomia 50° Convegno Nazionale

Evoluzione dei sistemi agronomici in risposta alle sfide globali Udine, 15-17 settembre 2021

Starting with quality seed for low impact cultivation: nitrogen fertilization schedule in a wheat seed crop affects the growth parameters of offspring seedlings

Paolo Benincasa^{1*}, Beatrice Falcinelli¹, Fabio Stagnari², Angelica Galieni³

- ¹ Dip. di Scienze Agrarie, Alimentari ed Ambientali, Univ. Perugia, IT, paolo.benincasa@unipg.it
- ² Facoltà di Bioscienze e Tecnologie degli Alimenti, Agricoltura e Ambiente, Univ. Teramo, IT
- ³ CREA-OF, Monsampolo del Tronto (AP), IT


Introduction

- High-quality seed is needed for successful crop establishment in view of a low impact cultivation
- The total rate and timing of N application in a wheat crop affect grain assimilate accumulation

AIM: evaluate whether and how N fertilization rate and timing in a wheat seed crop can affect the germination performance and seedling vigour of offspring seeds

Materials and Methods

Seed crop: 2 cultivars of *T. aestivum* x 6 N treatments split-plot design with 4 reps (randomized blocks)

• Cv. Bora **X** • N300: 300 kg N ha⁻¹ (60 kg x 5) from Dec to Apr • Cv. Bologna


- N60+0: 60 kg N ha⁻¹ on mid December
- N0+120March120 kg N ha⁻¹ on mid March
- N0+120April: 120 kg N ha⁻¹ on early April
- N0+120May: 120 kg N ha⁻¹ on early May
- NO: never N fed.

Offspring seeds: 12 treatments x 4 reps (trays) - randomized blocks

Germination in distilled water

Dark/light as 8/16 h (200 µmol photons m⁻²s⁻¹)

Measurements: germination performance, growth parameters pigment contents, several vegetation indexes (VIs)

Plants, spike, flag leaf (above) and offspring seedlings (below) for the six N treatments of one cultivar

Results

- The two wheat cultivars differed for seedling growth parameters, pigment contents and VIs, but this was expected and will not be presented here (data not shown).
- The N fertilization schedules affected several seedling growth parameters (Table 1).
- Seedlings of N300, N0+120Mar, N0+120Apr and even N0+120May showed significantly greater growth and chlorophyll content as compared to N fed very early or never (N60-0 and N0).
- Late N fertilization caused a grain yield in the seed crop as lower as later was the N application (data not shown), thus a unique very late N application is not recommendable. However, it is of relevance that this did not depress the vigour of offspring seedlings.
- No significant differences were observed for NDVI (Table 1) and other Vis (data not shown). This because other factors, besides the N related traits, likely come into play at the seedling stage.

Table 1. Germination percentage (G, %), mean germination time (MGT, d), individual shoot length (L, mm), fresh weight (FW, mg), and dry weight (DW, mg), contents (µg shoot⁻¹) of chlorophyll A and B (ChlA and ChlB, respectively), carotenoids (Car), and NDVI as affected by N fertilization schedules (averaged over the two cultivars). See text for labels.

N treatments	G	MGT	L	FW	DW	ChIA	ChlB	Car	NDVI
N300	97	1.40	112	54.6	8.65	75.3	43.2	12.9	0.761
N60+0	96	1.30	93	47.0	7.71	63.3	34.2	12.5	0.783
N0+120March	94	1.38	100	51.4	8.51	56.4	30.9	10.1	0.784
N0+120Apr	96	1.41	104	51.8	8.45	64.1	34.6	11.8	0.775
N0+120May	93	1.32	108	56.7	8.75	66.0	32.3	12.0	0.786
NO	96	1.31	94	44.3	7.20	55.2	29.1	10.6	0.764
Significance of ANOVA	-	n.s.	**	**	**	*	**	n.s.	n.s.
LSD		0.11	8.3	4.3	0.72	10.1	6.7	2.5	0.027
*	+								

* p<0.05; ** p<0.01; n.s. not significant.

Conclusions

- Wheat seedling vigour was increased by N fertilization to the seed crop.
- Very late (i.e., at active shoot elongation) or extremely late (i.e., at pollination) N application to a crop previously grown with severe N deficiency, allowed to obtain a seedling vigour comparable to that of seedlings obtained from crops well N fed throughout the growth cycle.
- Further research is scheduled to evaluate the effect of N treatments in the seed crop on seedling phytochemical content for obtaining edible sprouts & wheatgrass with high nutritional value.

References

Benincasa et al. 2015. Phenolic compounds in grains, sprouts and wheatgrass of... J. Sci. Food Agric. 95, 1795-1803. Benincasa et al. 2017. The relationship between grain and ovary size in wheat:.... Field Crops Res. 210, 175-182. Lichtenthaler H.K., Buschmann C. 2001. Extraction of photosynthetic tissues:.... Curr. Protoc. Food Anal. Chem. 1: F4-2. R Core Team 2017. R: A Language and Environment of statistical computing. R foundation, https://www.rproject.org